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It has been shown recently [A. Siria, A. Drezet, F. Marchi, F. Comin, S. Huant, and J. Chevrier, Phys. Rev.
Lett. 102, 254503 (2009)] that in the plane-plane configuration, a mechanical resonator vibrating close to a
rigid wall in a simple fluid can be overdamped to a frozen regime. Here, by solving analytically the Navier-
Stokes equations with partial slip boundary conditions at the solid-fluid interface, we develop a theoretical
approach justifying and extending these earlier findings. We show in particular that in the perfect-slip regime,
the abovementioned results are, in the plane-plane configuration, very general and robust with respect to lever
geometry considerations. We compare the results to those obtained previously for the sphere moving perpen-
dicularly and close to a plane in a simple fluid and discuss in more details the differences concerning the
dependence of the friction forces with the gap distance separating the moving object (i.e., plane or sphere) from
the fixed plane. We show that the plane-plane geometry is more sensitive than the sphere-plane geometry for
the measurement of slippage coefficients. Finally, we show that the submicron fluidic effect reported in the
reference above, and discussed further in the present work, can have dramatic implications in the design of

nanoelectromechanical systems.
DOI: 10.1103/PhysRevE.81.046315

I. INTRODUCTION

Nanomechanical resonators and nanoelectromechanical
systems are widely used in a multitude of applications such
as ultrafast actuation and sensing at the zeptogram and sub-
atto-Newton scales [1-5]. The extraordinary sensitivity that
such nanoelectromechanical systems (NEMSs) provide relies
mainly on their very high oscillating pulsations and quality
factors Q. However, while Q factors in the tens or hundreds
of thousands can be obtained in vacuum and/or cryogenic
environments, these values degrade dramatically in liquid
and gas phases meaning that much more work is still to be
done to reach the technological level (see, however, [3,6]). It
is therefore necessary to characterize more precisely the vis-
cous forces exerted by fluids on the vibrating motion of
NEMS and this constitutes the motivation for the present
work.

Over the last years, micro- and nanofluidics experiments
[7] reported that the physical properties of fluids flowing into
or around confined systems, such as nanochannels [8], are
strongly modified compared to those encountered at the
micro- and macroscales. In particular, it has been shown that
the usual no-slip boundary conditions, which are universally
used since the 19th century to model the behavior of New-
tonian fluids at a solid interface, break down at the nanoscale
[9]. Such modifications of boundary conditions are also ex-
pected to have a huge impact on NEMS dynamics since
properties known for microelectromechanical systems
(MEMSs) [10-15] cannot simply be scaled down to the
nanorealm.

In a recent work, we investigated the importance of gas
damping on a thermally actuated microlever as it is gradually
approached toward an infinite wall in parallel geometry [16].
The experiment performed at room temperature in air
showed that the sub-Angstrom lever oscillation amplitude,
i.e., in the direction perpendicular to the parallel planes, is
completely frozen as the gap d is progressively decreased
from 20 um to 400 nm. Moreover, the friction force re-
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corded was much larger than that predicted by the Navier-
Stokes hydrodynamical equations solved together with the
no-slip boundary conditions. Instead, the reported results are
qualitatively and quantitatively well understood if one ac-
cepts the perfect-slip boundary conditions for which friction
at the lever-gas interface is prohibited.

The aim of the present paper is twofold. First, we study
theoretically the motion of the Newtonian fluid, i.e., air,
around the oscillating micro plate. Starting with the linear-
ized Navier-Stokes equation, we analytically show that
perfect-slip boundary conditions lead to the correct dynami-
cal behavior reported experimentally in Ref. [16]. We com-
pare our findings to other more traditional approaches based
on the no-slip boundary conditions and show that they nec-
essarily conflict with the experimental facts. During the
analysis, we also discuss the different possible boundary
conditions and in particular the impact of the slip length of
the beam dynamical behavior. The second goal of this paper
is to show the important implications that our findings may
have on the engineering and architecture of future NEMSs
operating in gaseous environment. Here, on the basis of the
results obtained in Ref. [16] for a model system, we discuss
precisely the existence of a critical overdamped regime for
NEMS oscillating in fluids and study the influence of mate-
rials, and geometrical and intrinsic dynamical properties on
this regime.

The paper is organized as follows. In Sec. II, we discuss
the general characteristics of the dynamic problem in con-
junction with Navier-Stokes equations and boundary condi-
tions. In Sec. III, the static regime corresponding to various
slip lengths and valid for small gap values is studied analyti-
cally and compared (successfully) to the experimental results
reported in Ref. [16]. In Sec. IV, we briefly discuss the pos-
sible microscopic mechanisms involved in order to explain
the reported results. In particular, we compare the calcula-
tions obtained here for the plane-plane geometry to those
already obtained in the sphere-plane configuration by Taylor
and Vinogradova [17,18]. We then show that the plane-plane
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FIG. 1. Scheme of the one end-clamped parallelepiped cantile-
ver used in Ref. [16]. The lever has dimensions ¢, L, and w and is
vibrating in the z direction at a distance d from the substrate.

geometry (i) constitutes the ideal candidate to measure slip-
page coefficients on a large range of d values and (ii) is more
sensitive than the usual sphere-plane geometry. Finally, in
Sec. V, we discuss the consequences of our findings for
NEMS dynamics. A summary is given in Sec. VI.

II. MECHANICAL OSCILLATOR
IN A NEWTONIAN FLUID

We consider a thin silicon commercial cantilever used in
atomic force microscopy (AFM) for liquid imaging [16].
This system is modeled as a parallelepiped with length L,
width w, and thickness 7. The lever is clamped by one end
and oscillates mainly along the z direction (see Fig. 1). In
vacuum, this beam may be viewed as a harmonic oscillator
with an intrinsic resonance pulsation w, and effective mass
m (internal losses can be fairly neglected in the following
analysis). In the fluid, the viscous force acting on the lever is
characterized by a dissipative coefficient y connecting the
viscous force F, normal to the lever to the velocity U of the
lever along the same direction: F,=—vyU. At short distance,
i.e., in the nonretarded regime, 7y is given by [16]

2nLw
y_ d ’ (1)
where 7 is the (dynamic) fluid viscosity and d the distance
between the lever and the substrate (see Fig. 1). As we will
now show, this law results directly from the perfect-slip
boundary conditions applied to the Navier-Stokes equation
and it differs from the usual y= nwL3/d> behavior deduced
by considering the no slip conditions [16,19].

To derive this result, we start from the nonlinear Navier-

Stokes equations for an incompressible fluid
plog+ (@ V)il= nV°5 - Vp, 2)

where U is the local fluid velocity, p its density, and p the gas
pressure. To calculate the gas flow around the lever, we take
into account specific properties of the system under study.
First, the importance of the nonlinear term (v -€)z7 can be
estimated from the knowledge of the Reynolds number R,
:=pX/v=pvX/ 7 calculated for a characteristic length X and
fluid velocity v (v=7/p=1.5X107 m?/s is the kinematic
viscosity). In the present context, a correct order of magni-
tude of the velocity in the fluid is given by the lever velocity
components U,, U,:=U along the x and z directions, respec-
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tively. An important related feature is that we have here U,
< U. Indeed, writing 6= &z/L (with 6z=0.05 nm the typical
lever oscillation amplitude), the main angle shown by the
lever with the x axis, we get the estimation U,/ U=6
=107% which implies that the motion is mainly vertical. To
simplify our analysis, we therefore assume that the lever is a
horizontal plate vibrating along the z direction. The lever
oscillating at the frequency w/(27)=50 kHz, one obtains

U=wdz/(2m)=25X10"° m/s, and thus with X:=d
=50 wm,
ozd
= 208X 10 <1. 3)
27y

As a consequence of this ultrasmall Reynolds number, we
will completely neglect nonlinearity in the rest of this work.
As a corollary of this analysis, we also deduce the Mach
number M=v/c~U/c=10"%<1 (c sound velocity in air).
The vanishing value of M justifies the fluid incompressibility
hypothesis V.5=0.

The second question that we should deal with concerns
the amplitude of the dynamical term pd,v=—iwypv in Eq. (2).
Since we are concerned with harmonic oscillations, we intro-
duce a second Reynolds number

2
R = % ~2 X 10"(d[ um])?, )
where d[um] is the measure of d in micrometers. Clearl
R! (and therefore pd,v) is negligible as far as d<<\2v/w,
=10 wm, i.e., as far as the gap d is smaller than the bound-
ary layer thickness &g (see below for discussion). In the
present work, we will only consider this static regime and
neglect the dynamic term.
In order to solve the linearized Navier-Stokes equation

NG -Vp=0, (5)

one must provide the precise boundary conditions for the
fluid velocity at the solid interfaces. The condition for the
normal component of the velocity is quite obvious [19,20].
Indeed, since the fluid cannot go through a solid interface,
the fluid velocity v, must equal the velocity of the plate U at
z=d and must also vanish along the surface z=0 [19,20].
However, the precise form of the conditions for the tangen-
tial components v, and v, is not so natural and is a subject of
debates and controversies since the birth of hydrodynamics
[9,21-23]. The problem was already well addressed by
Navier [24] who introduced the two most known possibilities
which are, respectively, the no-slip and perfect-slip boundary
conditions. Following the no-slip hypothesis, the fluid veloc-
ity along the interface must equal the in-plane velocity of the
solid boundary. In the present case, the no-slip conditions
lead to v,=v,=0 along the substrate plane z=0 and v,=U,
=0, and v,=0 along the cantilever interface at z=d. The
no-slip hypothesis is well documented in the literature and
experimentally justified at the macroscale [9,21-23]. It leads
however to increasing difficulties and contradictions in the
micro- and nanofluidic regimes where fundamental and sta-
tistical properties of molecules such as the mean-free path
and the surface roughness cannot be ignored [7,9,21-23].
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The second extreme possibility, the perfect-slip boundary
conditions, supposes having d,v;=0 (from now on we use the
notation i=x,y) along the solid interface. These are reminis-
cent for conditions on the viscous stress tensor o;,=7(d,v;
+dp,)=0, meaning that no tangential friction is allowed be-
tween fluid and solid. We however point out that the equiva-
lence between the relations 0,,=0 and d,v;=0 assumes the
additional conditions dv,=0 which implies that v, does not
depend on x,y in the vicinity of the solid boundary (this is
obviously true on the interface provided that the boundary
conditions on v, are fulfilled). Beyond these two extreme
cases, more realistic approaches were proposed to take into
account a possible partial slip at the boundary. In particular,
Navier [7,9,21-24] suggested the existence of a surface fric-
tion force law o n =«kv;, where ii=n_Z is a unit vector nor-
mal to the surface and oriented outwardly from the solid to
the fluid and « a dissipative coefficient. With the same as-
sumptions as before, this leads to

n.dv;=kvi/n=vb, (6)

where b is the so-called slip length. This law has been con-
siderably studied in the recent years with the advent of
micro- and nanofluidics [7,9,22,23]. Equation (6) has been
confirmed many times in particular for liquid flows in
nanochannels [22]. However, the measurements of the asso-
ciated slip length b reveal a broad spectrum of values which
specifically depend on the system considered [7,23]. This
shows that only a microscopic analysis could lead to a better
understanding of the phenomenon. Keeping this point for
latter discussions, we will here apply the law given by Eq.
(6) to our problem and see how it compares to the experi-
mental results.

III. STATIC LIMIT

In the present analysis, we consider the static regime valid
for d < 83:=\2v/ w,. We must therefore solve the system of
coupled equations nﬁ25 =V}7, V.-5=0 together with the con-
ditions given by Eq. (6). The problem is reminiscent for the
one solved by Reynolds in the case of two parallel disks in a
dissipative fluid. Reynolds considered two disks approaching
each other with a constant velocity = U along their common
axis of symmetry. However, despite geometry differences,
Reynolds considered specifically the case of no-slip bound-
ary conditions (which were universally accepted at that time)
and not the more general Eq. (6). Using the same approxi-
mations than Reynolds, we here suppose d,v;,d,v;<d.v;,
o, 0,v,<dv,, and d,p=0 which are standard in lubrica-
tion theory. We then have

NV, = dp. (7)
After integration with respect to z, this leads to
1
Ui(-x’y’z) = ;7 iP(X’Y)Zz"' ai(x5y)Z+Bi(x’y)' (8)

To be general, we are introducing two a priori different slip
lengths b, and b, for the interfaces at z=0 and z=d, respec-
tively. This hypothesis implies
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vi(z=0)= bOazvi(Z =0), vz=d)=- bl&zvi(z =d)

and therefore

2b,+d

1
vi(x,y,2) = Eﬁip(x,y){zz—d d(Z+bo)} 9)

by+ b+

The fluid incompressibility relation d,v,+dv,+d.v.=0 and
the boundary conditions for v, at z=0 give the expression
v (x,y,2)==[§(dv,+dv,)dz, ie.,

| 2b+d (7 z
v, = ;}(5’)2{"' a5)]9(%&)[‘150.Flﬁxz +b0z) - g}

At z=d, we have the boundary condition v,=U and we de-
duce

(a2 + F)p(x.y)
29U

= (11)
1 1 2by+d 2b,+d
-—+- &+ bod*
3 2b0+b1+d b0+b1+d

z 2b,+d [
Ul —-—+d——| —+by2
3 b0+b1+d 2

Uz(x,y,Z)Z .
1 1 2by+d 2bi+d
-t ———— |+ ———byd*
3 2by+b;+d

by+by+d ’
(12)
In particular, in the limit by=b; —+%, we have v,=Uz/d
whereas for by=b,=0 we obtain v,=6U(-z*/3+7%d/2)/d’. 1t
should be observed that the solution for v, in the perfect-slip
limit looks like the well-known solution of the Couette prob-
lem [19,20] for the permanent fluid motion between two
plates in relative and uniform motions along the x direction.
It is worth noting that the directions of the fluid motion and
the boundary conditions used are however completely differ-
ent in these two problems (indeed, in the Couette problem,
we assume the no-slip boundary conditions and neglect v,
[19,20]). Here, due to the presence of terms with v_, our
approach deviates from this standard result.
The normal force exerted by the fluid located between z
=0 and z=d on each surface element dxdy of the lever is
given by

and

dF. =~ 0.+ pl|.—gdxdy = [~ 2700,

=a+pX)]dxdy, (13)

where o,,=27d.v, is the fluid stress tensor along the z direc-
tion and therefore —o-_|,_,dxdy is the dissipative part of the
resulting force dF,. Using Eq. (12), we obtain
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2b,+d
2q9U| d* - (d* + byd)
| by+b,+d
-0, |,=g= .
wled 1 1 2b,+d 2, +d
—— - d*+ bod®
3 2by+b+d boy+bi+d
(14)

Interestingly, this contribution is independent of x,y and of
the lateral boundary shape (C) associated with the lever and
the substrate. The resulting dissipative force —[ (50, |.—qdxdy
on the plate of surface S is consequently

2b,+d
29SU| d* = ——————(d* + byd)
dissi b0+b1+d
Flbblp.z .
: 1 1 2b+d 2b,+d
-—+- &+ bod*
3 2byg+b;+d bo+b,+d

(15)

The second contribution to the force is associated with the
volume pressure p(x,y) that is solution of the two-
dimensional (2D) Poisson equation (¢ + &i)p(x, y)=A, where
A is a constant [see Eq. (11)]. Lateral boundary conditions
along (C) are here playing explicitly a role in the analysis.
Let us suppose, for example, that the substrate is infinitely
extended in the z=0 plane and that the lever is delimited by
a rectangular boundary of length L and width w in the z=d
plane. A lengthy Fourier analysis (see the Appendix) shows
that the pressure field can be expanded as

JALY 1
plx,y) =po+ 72 Esm(rmx/L)

X [ane+7my/L + Bne—wny/L _ 1]’ (16)

where n are odd integers and «,,, B, are constant coefficients
(see the Appendix). To obtain this formula, the boundary
condition p=p, (py is the atmospheric pressure) was im-
posed on the rectangular contour. Similarly, if we consider
the one-dimensional (1D) problem with L finite, w=+0o°, and
with p a function of x only, we deduce after a direct integra-
tion

P =po+ 502 D), (17)

where we used the boundary conditions p(0)=p(L)=p,.
Equivalently, this result could also be obtained from the Fou-
. . AL 1. .

rier expansion p(x)=po—=_52, 5sin(7mx/L). Finally, as a
last example, we consider the circular plate of radius R. As-
suming the radial symmetry, this problem leads to the solu-

tion
A 2
p(r):p0+z(r2—R), (18)

where r is the radial coordinate and p(R)=p, along the cir-
cular contour of radius R. More generally, by using the
uniqueness theorem, it is easily shown that the pressure
p(x,y) can always be written as
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plx.y) =po+Ag(x,y), (19)

where g(x,y) is the solution of (&i+&§)g(x,y)=l which is
univocally determined by the boundary condition g(x,y)=0
along the contour. The resulting vertical force due to the
pressure field on the plate of surface S is thus given by

Fgressure =f (p(x,y) —po)dXdy :Aj f g(x,y)dxdy
s) )

=AS(g), (20)

where the term —p, equilibrating the pressure +p, from Eq.
(19) is due to the force exerted by the fluid on the second
side of the cantilever. Considering the examples quoted pre-
viously, we find explicitly

Jr—— 8AL3WE L . 2L (e+7mw/(2L) _ e—ﬂ'nw/(ZL))Z
z 71,4 , I’l4 mTmw e+77nw/L_ e—'rrnW/L
(21)
for the rectangular plate and
SAL*w « 1 ALw
Fpressure — — = 22
‘ o % n* 12 (22)

for the 1D plate [note that w is a finite width in the y direc-
tion introduced for reasons of dimensionality and that Eq.
(22) is the limit of Eq. (21) for w— +o]. Similarly, for the
disk, we deduce

_ 7AR'

F}Z)I'CSSUTC = 8 . (23)

These forces due to pressure can be compared to the dissi-
pative contribution given by Eq. (15) which can equivalently
be expressed as

o 2by+d
thss1p. =AS|:d2 _ 1—(d2 + bOd):| (24)
z by+b,+d
and leads to the total force F,=F ?ressure-"ngSSip-’
2b+d
Fo=AS|(g)+d* = = ——(d*+bd) |, (25
. [(g) b0+b1+d( ’ )] 2
with
29U
A= '
1 1 2b+d 2by +d
- &+ bod”
3 2b0+b]+d b0+b]+d

(26)

In the usual limit of vanishing slip lengths, F' ;ﬁ“ip‘:O and we
therefore have

129US
£ o127 (g)

= )

which is the generalization of the Reynolds formula for an
arbitrary plate shape in the no-slip limit. Inversely, in the
limit by=b, infinite, i.e., perfect slip, we obtain p(x,y)=p,,
FPU€=(), and thus

046315-4



GIANT SLIP LENGTHS OF A SIMPLE FLUID AT...

100 !
--b=0
—b=+w
o ~-b=100pm | |
= - b=500pm
g 60k * experiment| |
z
=
3 4or .
201 !

100 120 140

60 80
d[um]

FIG. 2. (Color online) Evolution of the beam quality factor Q as
a function of the gap d for different slip lengths b and for the lever
mechanical properties given in Ref. [16]. The experimental data are
in good agreement only with »>500 wm as shown on the red
(continuous) curve.

29US
Fo=- = (28)
which is the result used in Ref. [16] in the perfect-slip limit.
It is worth noting that this formula is only dependent on the
surface S of the vibrating plate and not on its exact geometry.
It implies that the result obtained in Ref. [16] should be very
robust with respect to geometry considerations. We point out
that this perfect-slip limit can be directly obtained by solving
the equation nd?vz:O with the boundary conditions for v,.
Indeed, the direct integration gives v,=Uz/d. The pressure

p=po can be deduced similarly [25].
It is worth noting that in the derivation of all these for-
mulas, the Reynolds assumption d,p=0 implies also nﬁfuz

=d,p=0. However, from Eq. (12), we deduce

A[ 2b,+d d]
o hitd d

v, =——|z- 29
e bo+ by +d2 (29)

2
In the perfect-slip limit (where A—0), the Reynolds condi-
tion is automatically fulfilled, i.e., the solution is self-
consistent. However, in general, 7/(9211 # 0 and this limits the
validity of the previous results. The Reynolds hypothesis can
nevertheless be Justlﬁed for all practical purposes, if |dv.|
<|dvj], that is, if [z— Py +d2|<|&,g| Since |d,g| ~ L, where
L is a typical lateral d1mens1on of the lever, the Reynolds
assumption is in general justified for L>d.

To study the influence of the slip length on the dynamic
properties of the oscillator considered in Ref. [16], we will
now consider a simplification. Such a simplified force ex-
pression is obtained if the condition by=b;=b is fulfilled.
Considering, for example, the rectangular plate [in the limit
given by Eq. (22)], we get for the total force

L*+12bd

By 6bd (30)

F,=—nUL
From this follows the damping constant y:=—F,/U. To com-
pare this result to the experiment, we show on Fig. 2 the
evolution of the quality factor Q=k/(wqy7y) of the oscillating
beam calculated for a stiffness k=0.0396 N/m and a pulsa-
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tion wy=27 X 50 kHz considered in Ref. [16] and for differ-
ent slip lengths b. Clearly, the agreement with the experi-
mental data is very good in the limit d < & (i.e., far from the
observed saturation at large gaps) for giant slip lengths such
as b>500 um (red curve). Oppositely, the reported results
are in total conflict with the standard no-slip prediction Q
~d* (blue curve). While the present study focused on the
static regime, it is interesting to remark from dimensional
analysis that one should expect to observe saturation around
Sp=10 um (i.e., ¥;jm=27S/ 8). The value observed experi-
mentally corresponds to dz=25 um, which is of the same
order of magnitude but nevertheless significantly larger. The
difference could be imputed to geometry considerations, i.e.,
to the fact that the dynamics of the fluid around the lever
should be strongly influenced by the finite size of the system
under study (indeed, in the regime where the boundary layer
Og plays explicitly a role, retardation should be taken into
account). A different explanation could be that the model of
perfect slip breaks down at large gap. A preliminary analysis
in that direction shows that if we conserve the inertial term in
the Navier-Stokes equations, we indeed obtain a saturation
regime due to an additional damping occurring on the length
scale b~ 6y and this even if b is infinite in the static regime.

IV. DISCUSSION

Fundamentally, the existence of a giant slip length regime
is very surprising and interesting and should therefore be
discussed carefully. Here, we will only review some results
which, we think, are important to justify microscopically the
results discussed in this paper and in Ref. [16]. We remind
that from a microscopic point of view, the slippage coeffi-
cient is actually linked to the very nature of the interaction
between the oscillating surface and the air molecules. His-
torically, the first theoretical analysis of this phenomenon
goes back to Maxwell and to its kinetic theory of gases [26].
Following this approach, one can indeed distinguish between
a specular channel of interaction, for which the molecules are
colliding elastically with the surface, and a channel of inter-
action for which molecules are reflected diffusively from the
wall [9,21,26-30]. This second channel is linked to multiple
collisions between molecules and also to adsorption by the
surface. The slip length b in this statistical model is given by
the Maxwell formula [21,26-30]

2_2-
p=x=—Pd 31)
3 pa

where \ is the typical mean-free path of gas molecules (i.e.,

A=60 nm for air in ambient conditions) and p, the tangen-
tial momentum accommodation coefficient, i.e., the fraction
of those molecules hitting the surface which are reflected
diffusively. Clearly, if p, vanishes, then the slip length is
infinite. This suggests that in the working regime of our me-
chanical oscillator, the molecules are mainly reflected specu-
larly. Furthermore, recent analysis based on the fluctuation
dissipation theorem and the Green-Kubo relationship empha-
sizes the importance of several other microscopical param-
eters on the molecular dynamics close to a surface [9,22,23].
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Altogether, these studies provide an estimate for the slip
length given by

kgTnD
b~377

CLp(Tez’ (32)

where D is the fluid diffusion coefficient, o and € are, re-
spectively, a typical length and energy characterizing the mo-
lecular interaction, and C, a coefficient measuring the
roughness (larger C | mean larger roughness). This shows the
importance of surface roughness but also of surface defects
and nanostructuration [23] for the physics of slippage at
solid-gas interfaces. Future work should investigate the ef-
fects of theses parameters on the damping coefficient 7. It is
worth noting that past studies on the slippage at a solid-fluid
interface mainly focused on liquids for which the mean-free

path is much smaller (\~1 nm) and for which interactions
between molecules are much stronger. The existence of a
partial slip regime implies in those cases to work in the realm
of nanofluidics (e.g., nanochannels) with separating gap d
well below the micrometer range [7,22] or with AFMs in
contact mode [22,31]. Here, oppositely, we consider gases

and we can define a Knudsen coefficient K,=\/d
~0.001-0.06 which corresponds to a regime of transition
flow [7,9,23] occurring at large gap values d (it is indeed
well known that important deviations to the no slip boundary
conditions appear for K,~ 1073-1072 [7]).

Another relevant length in the analysis is the vibration
amplitude of the lever which we reported in Ref. [16] to be
0z=0.05 nm. This is actually a very small amplitude which
is attainable experimentally mainly because of the thermal
excitation mode and high sensitivity of the optical detection
setup used in [16]. This value for &z is also comparatively
smaller that those attainable with actuated AFM [32]. Work-

ing in this regime where 8z/\=10"><1 could therefore lead
to new physics and we expect that further studies in this
direction will be done in a close future (e.g., to compare the
effect of the vibration amplitude and of the excitation modes
on the micro- and nanolever dynamics).

In this context, it is worth mentioning that the theoretical
model developed in this paper for the plane-plane configura-
tion constitutes the equivalent of the Vinogradova formula
obtained for the sphere-plane configuration [9,17,18,23,32].
The analysis of Vinogradova generalizes the result obtained
by Taylor [22] in the no-slip limit and which predicts a fric-
tion force F.=—6mnR*U/d for a sphere of radius R moving
along the z axis with the velocity U perpendicularly to the
interface z=0 and separated from this plane by a minimal
gap d. It is interesting to point out that the no-slip condition
predicts the same law F,> 1/d as in the plane-plane configu-
ration with the perfect-slip condition [i.e., Eq. (28)] but with
a different numerical value for yryyjor:= 67 nR*/d [compare
Eq. (1)]. The Vinogradova model predicts oppositely F.
=27nR?U In(6b/d)/b in the limit h—+o of the perfect
slip. The different regimes of force depending of the value
for the slippage length b and from the geometry considered
are summarized in Table 1.

The present problem reminds us of a very known similar
difficulty encountered in experiments for measuring the Ca-
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TABLE 1. Table summarizing the asymptotic viscous force re-
gimes for both the plane-plane and sphere-plane configurations and
for the no-slip and perfect-slip cases.

Plane-plane Sphere-plane

b=0 y=—14g)S/d?
y=27S/d

y=6mnR*/d

b—+ y=2m9R* In[d/(6b)]/b

simir force in the sphere-plane or plane-plane configuration.
It is worth pointing out, however, that in the Casimir effect
[33], the force in the plane-plane configuration varies as F,
~#S/d* whereas it varies as F,~#AR/d’ for the sphere-plane
configuration (% is the Planck constant). Besides the impor-
tant difference in the power-law behavior in d between these
expressions and those predicted by hydrodynamics, it is in-
teresting to observe that in the perfect-slip limit, the viscous
force decays slowly when d increases whereas the same
force vanishes in the sphere-plane as predicted by the Vino-
gradova formula for b=+0o. Therefore, in order to observe
the perfect-slip regime, the plane-sphere configuration would
be much more demanding than the plane-plane configuration
studied in this work and in [16] since it implies that one
should consider very small gaps d to obtain a finite effect
with the sphere. This could have implication in optical near-
field microscopy where viscosity is suggested as a possible
mechanism to justify the shear force applied on the tip
probes in high vacuum [34] (see also [35,36] for experimen-
tal demonstrations at cryogenic temperature). Additionally,
this sensitivity of the force behavior with b in the sphere-
plane configuration could be used to probe more precisely
the value of the slippage length than in the plane-plane ge-
ometry. Oppositely, the giant slip effect studied in this paper
could thus be a specificity of the planar geometry and is
expected therefore to have a huge impact on the NEMS dy-
namics which are mostly developed with such geometry.

V. IMPLICATIONS FOR NEMS ARCHITECTURES
AND DYNAMICS

This brings us to the second point that we shall now dis-
cuss in this section, which is the implication of our results
for NEMS and MEMS engineering. Owing to the formula
given by Eq. (1), the effect of dissipation on the beam mo-
tion decays very slowly with d and in particular we see that
the quality factor Q:=mw/y decreases linearly with d.

Additionally, when d decreases, the pulsation at resonance

1{y\?
Wreson. = (US - _<_> (33)

is progressively downshifted [16]. This occurs until .
=0, i.e., from Egs. (1) and (33) when the critical distance d,
given by

\E Lw
do=~T% (34)
maw
is reached. For d=d,, the lever motion is consequently over-
damped (nonlinear effects are also expected in this limit). To
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FIG. 3. (Color online) Evolution of critical gap as a function of
frequency fy=wy/(27) for a Si (black line; numbered 1), SiC (red
line; numbered 2), GaAs (green line; numbered 3), and Au (blue
line; numbered 4) cantilever, respectively. Black dashed line corre-
sponds to the limit associated with the boundary layer. Experimen-
tal data points for the lever studied in Ref. [16] at the internal
resonance frequency 50 kHz are also shown for distance d close to
the overdamping regime (black vertical crosses). Red (horizontal)
crosses and circles correspond to characteristics of NEMS realized
with a distance to the substrate constantly equal to d=400 nm.
Such NEMS can approximately be modeled as the one shown in
Fig. 1.

describe quantitatively the importance of such a regime on
beam dynamics, we remind that for the levers considered
here, we have w0=\%r%é and m=ptLw, where p is the
bulk density, E is the Young’s modulus, and ry=1.875 104
[37].

Figure 3 shows the variations of d, as a function of f
=w,/(2r) for a thin lever with /=180 nm (same as in Ref.
[16]) and for different commonly used materials. For low
frequencies in the 10 kHz range and below, the overdamping
regime appears already at large separation distance d,
=0.1-1 um. Oppositely, for very high oscillator frequen-
cies in the 100 kHz range and beyond, we have d.
=<10-100 nm and the overdamping regime becomes a fun-
damental issue only at the nanoscale. For comparison, we
show on the same graph the experimental data points taken
from Ref. [16] and corresponding to working distances d
which are decreasing until the overdamped regime at d,. is
reached. Additionally, we show also the physical character-
istics recorded (i.e., internal resonance frequency f, and
fixed distance gap d=400 nm with the substrate) of typical
Si-made NEMS. These NEMSs can be with a good approxi-
mation described with the simple geometry considered here.
Clearly, working with such NEMS in a gaseous environment
may strongly affect their dynamics and only for very high f,
could the overdamping regime actually be overcome. This is
indeed confirmed for those NEMS annexed by a red cross in
Fig. 3 which we studied experimentally by using the same
optical method as described in Ref. [16]. The experiment
showed that NEMSs with such gaps do not resonate in air at
room temperature, confirming therefore the role played by
overdamping. For the NEMS indicated by a red circle, i.e.,
with frequency in the 100 kHz and MHz ranges, we were out
of the detection sensitivity of our setup and no data were
available.
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FIG. 4. (Color online) Evolution of the critical gap as a function
of the ratio ¢/ L for the same lever materials as in Fig. 3. Color lines
numbering and data points have the same meaning as in Fig. 3.

As a complementary analysis, we show in Fig. 4 the ex-
plicit dependence of d. on the aspect ratio ¢/L for different
materials. In the typical range of aspect ratio considered, the
overdamping regime covers distance gaps d going from the
micrometer range to the nanoscale and, therefore, cannot be
neglected. Again, this fact is confirmed by comparing these
graphs to available experimental data (see Fig. 4 and com-
pare to Fig. 3).

Furthermore, it is also useful to remind once again that for
a large gap d, the important length scale is the boundary
layer thickness 8 which characterizes the spatial region sur-
rounding the lever for which viscosity has an impact on the
fluid dynamics [19,20]. For d= &, the substratum lies out-
side this layer and dissipation must saturate [19,20], as re-
ported in Ref. [16]. Comparisons to values for d. (see Fig. 3)
show that the overdamping regime is always reached for
gaps smaller than dg. The overdamping regime appears con-
sequently as a robust limitation which should affect the de-
sign of any NEMS working in fluids. The results obtained
here for a particular lever geometry are expected to be very
general as soon as the beam geometrical dimensions are
larger than &z. However, when dimensions are smaller,
boundary effects due to the finite size of the system should
explicitly be taken into account in the definition of d..

VI. CONCLUSION

In this paper, we studied the linearized Navier-Stokes
equation in the static regime to describe the damping mecha-
nism of oscillating microplates in air close to a substrate. We
considered the influence of the slip length and showed that
results reported in Ref. [16] are only compatible with very
large slip length in the range »>500 um. We discussed the
implication of this mechanism on the oscillation properties
of NEMS and showed that an overdamping behavior repre-
sents a fundamental mechanism for such systems. We expect
that this work could have important consequences for NEMS
engineering.
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APPENDIX: THE RECTANGULAR PLATE
IN THE STATIC REGIME

The aim of this appendix is to solve the Poisson equation
(a2x+d§)p(x, y)=A, where A is a constant for the rectangular
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domain L X w with boundary conditions p=p, along the con-
tour. Using a Fourier series satisfying these boundary condi-
tions at x=0 and x=L, we can write

[ mnx
P(X,)’):Po+zcn()’)51n< L ) (Al)
Here, c¢,(y) is solution of
2 2
™ d 4A
- = +5e,y) = —e, A2
( . ) n(y) dyzcn(y) € (A2)

with €,=1 if n is an odd integer and ¢€,=0 if n is even. The
general solution of this equation is

f:—)eﬂmy/L + a’(,l—)e—ﬂ'ny/L _ 4_A 2 ) (A3)

Le
o "
(*)

The constant a,~’ are determined by the boundary conditions
p=po at y=0 and y=w. One therefore obtains

c,(y)=a

PHYSICAL REVIEW E 81, 046315 (2010)

+ 1L
o A, L]
n = l’l37T3 n[e+7mw/L _ e—mnv/L] ’
- /L
a = 44 L% LL=em ] (A4)
n Vl3'773 n [e+ﬂ'nw/L _ e—wnW/L] .
This leads to
AL G €
p(x.y) =po+ 72 —3sin(7nx/L)
an n
- /L
Xl =1+ —l —e +any/L
e+11'nw/L _ e—wnw/L
e+77nw/L -1
—mny/L
+ e+7mw/L_e—ﬂ'nw/Le ™ . (AS)
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